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Abstract—An approximate analytical solution of heat transfer through a two-dimensional turbulent

boundary layer with variable heat flux along a flat plate is derived. The effect of a short unheated length

on a wall is investigated. In addition, the effect of the combination of a short unheated length and a heated

line source midway along the adiabatic strip is evaluated. Numerical solutions are also carried out, utilizing

afinite difference marching procedure for parabolic type equations in boundary layers. Results are presented

for heat transfer solutions both as a function of distance from the leading edge and as a function of local
parameters.

1. INTRODUCTION

CoNVECTIVE heat transfer through a turbulent bound-
ary layer is a specific case of the general phenomena
of turbulence and turbulent fluid flows. As it is well
known, no purely theoretical solution of fluid dynam-
ics for the turbulent boundary layer exists at the
present. Consequently there are no exact theoretical
solutions available for heat transfer in the turbulent
boundary layer, but their occurrence in nature and
technology is so frequent that it has been necessary to
learn as much as possible about them.

Extensive literature resources concerning constant-
property flow with negligible viscous dissipation have
been cited in the book by Kays and Crawford [1]. A
few technically useful relations can be obtained with
some simplified approximations. The energy equation
with constant fluid properties is linear in temperature.
Hence, evaluation of heat transfer from a flat plate
can be decoupled from the momentum equations.
Numerous research works have been devoted in the
past years to the problems such as heat transfer from
a plate with constant wall temperature or constant
heat flux. These works provide basic building blocks
for constructing solutions for more complicated prob-
lems. Computation of heat transfer from a flat plate
with an arbitrary wall temperature distribution or wall
heat flux distribution can be performed by employing
superposition techniques.

In practical engineering problems, non-uniform
temperature or wall heat flux distributions across sur-
faces are encountered much more frequently than the
somewhat standard academic-type problems with
constant temperature or wall heat flux along a surface.
Hence, some simplified approximate solutions for the
aforementioned heat transfer problems are highly
desirable from a technical point of view.

The major task of this work was to carry out a

theoretical analysis of heat transfer through a tur-
bulent boundary layer with variable heat flux along a
flat plate. The effect of a short unheated length and a
concentrated heat source, which is frequently experi-
enced in many industrial applications, such as the
cooling problems of electronic elements, boiling heat
transfer, etc., was evaluated. The appropriateness of
applying Reynolds’ analogy and constant turbulent
Prandtl number in the weli-established approximate
method was checked with the aid of numerical solu-
tions compared with some available experimental
data.

The approximate analytical solution of the heat
transfer through a turbulent boundary layer with vari-
able heat flux along a flat plate was used as a guidance
for a laboratory experiment to evaluate the effect of
a short unheated length and a concentrated heat
source on a wall. Results are presented for turbulent
boundary layers of air on a flat plate. The relations of
Stanton number St vs Reynolds numbers, Re, and
Re,,, for three cases are evaluated (Fig. 1).
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F1G. 1. Sketch of the problem.
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NOMENCLATURE

A" constant for turbulence model, equation Greek symbols

(47)

a location where the adiabatic wall starts

location where the adiabatic wall ends

C  constant

¢ location of the concentrated heat source,

midway between ¢ and b

specific heat

! function for heat transfer coefficient,
equation (Al)

g function for heat transfer coefficient,
equation (A2)

h heat transfer coefficient

I integrals defined in equations (13), (20)
and (21)

k thermal conductivity

/ mixing length

Pe  Peclet number

Pr Prandtl number

Q. heat flow from the concentrated heat
source

go  wall heat flux

Re  Reynolds number

Stanton number

temperature

streamwise velocity

cross stream velocity

streamwise coordinate

cross stream coordinate

v,  characteristic length

'+ dimensionless distance.

>
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Subscripts and superscripts

o thermal diffusivity

f, beta function

f.  incomplete beta function

I'  gamma function

A, enthalpy thickness

dg boundary layer thickness

£ infinitesimal distance

ey eddy diffusivity for heat transfer

ey eddy diffusivity for momentum transfer
n dimensionless variable

K von Karman constant

A constant for turbulence model, equation

(46)
u  dynamic viscosity
v kinematic viscosity
& local variable
o density

T, shear stress on the wall.

a at location a

b at location b
¢ at location ¢
t turbulent

oo free stream
0 wall

flux per unit area.

(1) A classical flat-plate, heated, two-dimensional
boundary layer. The heat flux is uniform and heating
begins at the leading edge.

(2) Same as (1) except there is an adiabatic strip
0.0254 m long, 1.397 m downstream of the leading
edge.

(3) Same as (2) except there is a heated line source
midway along the adiabatic strip. The energy to the
line source is equivalent to the same length of heated
surface occupied by the adiabatic strip.

2. GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

For a steady, two-dimensional, constant-property
turbulent boundary layer over a flat plate with negli-
gible body force and negligible viscous dissipation,
the governing equations can be expressed as follows.
Continuity equation

cUu v
—+—=0. 1
Ox + dy M

Momentum equation

UL,
ax oy dy VoM ay | (

Energy equation

oT éT 0 oT
UE‘FV?}Y: ayl:(d-f—?H)aT} (3)

where ¢, and ¢, are the eddy diffusivities for momen-
tum and heat transfer, respectively. These quantities
must be determined by a turbulence model, which will
be discussed later. It also should be noted that all of
the quantities U, V and T are time-averaged mean
values.

The inlet conditions at the leading edge and the
boundary conditions for velocity fields are the same
for all three cases, which can be expressed as follows :

x=0: U=U,, V=0, T=T,
y=0: U=0, V=0
yvow: U=U,, V=0 “@

For the energy equation, boundary conditions at
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the outer layer are taken as the same, while the con-
ditions on the wall are different

yoow: T=T,. %)
(1) Case 1
y=0: ¢4=—k'0T/0y = gq,. (6)
(2) Case 2
y=0: ¢gp=¢q, forx<a and x> b
go= 0 fora<x<hb. N
(3) Case 3
v=0: ¢gp=¢q, forx<a and x>b
qgo=0 fora<x<c and c<x<bh
g, =9q. forx=c¢
where
i
f q. dx = go(b—a). ®)

3. APPROXIMATE ANALYTICAL SOLUTION

As mentioned before, analytical solutions can be
developed by accepting some degree of approximation
in return for a simplified usable result. The energy
integral equation was used, following the same general
procedure of a laminar boundary layer.

3.1. Heat transfer solution as a function of distance
from the leading edge

The solution of the turbulent boundary layer with
constant free stream velocity along a semi-infinite
plate with unheated starting length is treated first. The
details can be found in ref. [1]. A basic assumption
is that the velocity and temperature profiles can be
expressed by a 1/7 power law. Reynolds’ analogy is
also applied, i.e. Pr = 1 and Pr, = 1, so is the fact that
the boundary layer thickness varies with a 4/5 power
of length. Further assuming the starting-length cor-
rection for a step-wall temperature independent of
Prandtl number leads to a simple relation as follows :

é 9/107 - 1/9
St Prod = 0.0287Re:°-2[1— <> } . 9)

X

Following the same procedure for the laminar
boundary layer, the heat transfer solution can be
modified to yield the wall temperature as a function
of heat input 2, 3]. The result is given in the following
form:

To(x)—-T, = L 90(£)g(&, x) d¢ (10

where ¢3(&) is the arbitrary prescribed surface heat
flux and
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3 3'42 os Cos 3 é 9/10 ]—-8/9
g(&,x) = TPr Re; 1 S .

(1
Then equation (10) becomes
3.42 N
Ty(x)=T, = "= Pr Re:"'**fo g5(8)
é 9/10 |- 8/9
><|:l — <;> ] dé. (12)

3.1.1. Case 1. The simplest example for a specified
heat flux is a constant value. With ¢3(&) a constant,
equation (12) can be expressed in terms of a beta
function.

Define an integral

_ * Cg“o 40 _le 1 10
’=H“<;) ] df‘T“(ﬂ)
(13)

then the heat transfer solution can be presented via
temperature as

336
To(x)—T, = TPF‘”’ Re7** qux (14)
or in terms of Stanton number
St = 0.02976Pr=%* Re; °2. (15)

3.1.2. Case 2. A step-function of heat flux was pre-
scribed to the wall. Superposition of heat flux was
applied in equation (12).

For x < a, the same result as case 1 was obtained.

Fora<x<b

a

To(x)=T, = qoﬁ 9(& x) d¢. (16)

Forx> b

To()=T, = qo[J~ 9(& x)dé+ f 9(&.x) d&

0 o

- ﬁ 9(&: x) dé]- (a7

The integrals in equations (16) and (17) can be
transformed into a so-called incomplete beta function
defined as

B.(m,n) = fz’"(l —zy~'dz = B,(m,n)
o

—Bi-(m,n). (18)
The incomplete beta function is shown in Fig. 2.
Define two more variables
a 9/10
=1-{-
1u(X) <x>
b 9/10
me(x)=1- (;) (19)
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1.0 Therefore
g 09 1 Tﬂ(x)_ T/ = an(f_uﬂ X)Q(én)
= for &, > x,g(&,.x) = 0. (26)
[-~N
g 08 3 Force<x<bh
& -
— A [
& 07 P To(x)=T. = qo ,;[ g(&, x)dé+gle,0)Q.. (27)
0
0.6

.01 .1 1
Y

F1G. 2. Normalized incomplete beta function with respect to
B.(1/9, 10/9) = 8.8439.

then the integral in equation (16) becomes

ol eyt e _I()x 110
v=[ () t =5 (5:5)

1 10
—B, <9s‘9‘>jl- (20)
Similarly

B h é 9/10 1%/ B IOX 1 10
e [T a5 69)
i) e

In summary, the solutions for case 2 can be listed
as follows:

(1) x < a, same as case 1.
Da<x<b

342
To(x)—-T, = TPF "% Re; “*qol,. (22)
3x=b
342
To()=T, =7~ Pro%¢ Re; "*qo(I,+1—1,)
23)
or

3 - 0.4 R V—OAZ

S x Pr e_‘i_ (24)

T 342(1,+1-1,)

3.1.3. Case 3. A line source is placed at x = ¢, the
midpoint of a and b, which can be treated as a delta
function with a certain heat input

j .q« d¢ =go(b—a) = Q.. (25)

The line source is a limiting case of equation (10),
for which the interval approaches zero and the source
intensity increases to keep the heat input a finite value.

Forx > b

[

To(x)=T, = qoL g(&. x) d&+g(c, )Q.

0

+‘10J; 9(&x) déhqoj g(&,x)dé. (28)

Hence, the solutions for case 3 are:

(1) x < ¢, same as case 2.
Qec<x<gh

3.42

TO(x)_ Tx. = A;k—“ P’,——O.ﬁ Re;o'xqo {[tl+(b*a)

c 9/10 1-8/9
LT o
342

To() =T, ==~ Pr°° Re.""q,
¢ /1071 %/9
X{I,,+I—Ih+(b—a)[l—<x) ] } (30)

x Pr=%4 Re; %2
St=— a

342 {1,,+1_ L+ (b—a)[l - (%)9“0]' w}

(31

B x=bh

or

3.2. Heat transfer solution as a function of local
parameters

In some situations, the relation between heat trans-

fer coefficient and local parameters, say Re,,, is more

desirable. The energy integral equation as shown
below was used to derive this kind of relation [1]

f d

e = (AR VLT (0= T,1).

(32)

For a constant-property flow over a flat plate with
constant free stream velocity, the equation can be
simplified to

f di(E) de

o
Apm

=, U, CAT (=T, (33)
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3.2.1. Case 1. For constant heat flux, a simple

relation between A, and St can be obtained
A, =St x. 34

The Stanton number generally can be expressed in the

form
St = C*Re;" (35)

then the relation between A, and x for case 1 can be
derived as follows:

"

A= CRe " x = c(;" X' (36)
or
A2 Cﬂ; V(l—n)
X = <? v ) . (37)
Substituting into equation (35), one obtains
St = C"'="- Ref"m Y, (3%)

The constants in equation (35) can be determined
by comparing equation (35) with equation (15), i.e.
C =0.02976Pr "% and n=0.2. Then the relation
between St and Re,, can be obtained from equation
(37

St =0.01236Pr~"? Rey '*. 39)

It should be noted that there are no such simple
relations as equation (39) for cases 2 and 3. However,
the relation between A, and x can be evaluated
through equation (33) since the temperature difference
To(x)— T, has been calculated in Section 3.1. Thus
the relation between St and Re,, can then be obtained.

In the following, the relation between A, and x are
stated for cases 2 and 3.

3.2.2. Case 2.

(1) x < a, same as case 1.
Qa<x<b

qod
A, = . 40
- px/UxCp[TO(x)_ Tx] ( )
B)x>b
gola+x—>b)
= . 41
2= U, CiTo(0)—T,] “h
3.2.3. Case 3.
(1) x < ¢, same as case 2.
QDe<x<gh
qob
A, = . 42
2T P UL GITo )~ T,] “2)
B)x>b
A, 20> 43)

T 0 U CTe() =T’
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4. NUMERICAL SOLUTION

In order to solve the governing equations with the
prescribed boundary conditions, a turbulence model
has to be introduced to evaluate the eddy quantities
&y and g, or in turn, the eddy viscosity y, and the
turbulent Prandtl number Pr,.

The theory of turbulent wall shear layers is pres-
ently in a state of intense study, and new break-
throughs are continually in sight. But the simplest of
all the schemes proposed remains the very old Prandtl
mixing-length model, and with new information avail-
able on the very important behaviour of the viscous
sublayer, the mixing-length model provides a remark-
ably adequate basis for many engineering appli-
cations, especially for some simple flow patterns. The
following calculations were based on this turbulence
model :

p = pl*|oU[oy|. (44)

To evaluate the mixing length /, the outer region of
the boundary layer and the near wall region must be
considered separately. For flows remote from walls,
[ is usually taken as uniform across the layer and
proportional to the thickness of the layer. For a
boundary layer on a wall, the variation of / in the
outer part is similar to that in free turbulent flows,
but / is proportional to the distance from the wall for
the near wall region. Escudier’s formula is usually
recommended by investigators working on this field
[4,5]

I=xy forO<y<iy/k

[=2y

(45)

fory = Ay,/x (46)

where y is the distance from the wall, 4 and x are
constants; x is usually called the von Karman con-
stant and y, is a characteristic thickness of the layer,
usually taken as d,, (the boundary layer thickness at
the point where U/U,, = 0.99).

However, for a region very close to the wall, called
the viscous sublayer, equation (45) needs to be modi-
fied. Then, van Driest’s hypothesis is applied at the
near wall region, which is

{=xy[l —exp (—y*/AT)]

where A" is a constant and y* a dimensionless dis-
tance defined as

(47)

y* = p(pt)"*

in which 7, is the shear stress on the wall.

The turbulent Prandtl number must be specified for
applying various turbulent transport theories to heat
transfer. Most workers have solved the energy equa-
tion by assuming a constant Pr.. A marching pro-
cedure for solving parabolic equations of boundary
layers described in ref. [4] was utilized for the present
work. The empirical constants of the Prandt]l mixing-
length hypothesis were adopted from ref. [1]: i.e.
A =0.085, k = 0.41 and 4™ = 25. A value of 0.9 for
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the turbulent Prandtl number was applied for the
constant Pr, results.

5. RESULTS AND DISCUSSIONS

Results were presented for turbulent boundary lay-
ers of air on a flat plate. Heat transfer solutions were
obtained with free stream temperature, T, = 20°C,
and free stream velocity, U, = 15 m s~ '. Boundary
conditions on the wall were prescribed heat flux, with
¢o=240 W m™°, ¢=1397 m, b= 14224 m and
Q. = qolb—a). Fluid properties, which were obtained
from ref. [1], were regarded as constants based on the
free stream temperature: p= 12047 kg m™’,
w=1817x10""kgm 's™ ', C,= 1004 kg 'K,
k=2563x10">W m~' K~'and Pr=0.712. The
relation between Re. and x can be evaluated as
Re.=9.945x 10°x or x = 1.0055x 10~ °Re.. Loca-
tion x = a corresponds to Re, = 1.389x 10% and x = b
corresponds to Re, = 1.415x 10°.

5.1. Heat transfer solutions as functions of x (or Re,)
For uniform heat flux, it was obtained from equa-
tion (15) that

CTX = St Pr®* Rel* = 0.02976.

The numerical solution for case 1 with constant Pr,
showed that the above constant varied within 0.03007
and 0.02967 for the range of 5x 10° < Re, < 5x 10°,
which gave the deviation between analytical and
numerical solutions within 1 %.

A comparison of temperature difference dis-
tribution for a uniform heat source and for a dis-
continuous heat source dissipating the same power
has been presented in ref. [2]. The temperature differ-
ence distribution for a plate with pulse heat input was
also presented in ref. [3]. It was found that there is a
steep change (decrease) of temperature distribution
in the downstream vicinity of the starting point of
unheated walls, and similarly, there is a steep increase
of temperature distribution in the immediate down-
stream region of the end point of unheated walls, The
situation in the present work is somewhat similar but
not equivalent to the above cases. However, the trend
of the variation of temperature distribution for an
unheated wall can be applied to the present situation.
Since the temperature difference, 7,—7,, in the
unheated region is lower than that of uniform heat
flux, this situation is still sustained in the immediate
downstream region of the end point of the unheated
wall. Thus, it is expected that St in this region for the
case with an unheated wall is higher than that for
uniform heat flux. However, the effect of an unheated
wall on St decays rapidly downstream since there is a
sharp increase of temperature distribution, and this
effect is only restricted in the vicinity of the location
where heat flux changes.

Figure 3 shows the relation of Stanton number vs
Re,. It can be seen that a short unheated length on
a wall (¢ < x < b) has a strong effect on St in the
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immediate vicinity downstream of the unheated
length. For example, at x = b-+¢ (¢ is an infinitesimal
distance), St, = 2.007x10 *, St,=56x10 ' and
Sty =4.09x10"", where St,, St, and St, are the
Stanton numbers of cases 1, 2 and 3, respectively. As
expected, variations of St for cases 2 and 3 decay
rapidly downstream. For example, at the location
Re.=1.5x10° (i.e. x = 1.5083 m, 0.0859 m down-
stream from b), St,/St, = 1.021 and St5/St, = 1.011.
The variation of St at this location is reduced to
around 2% for case 2 and around 1% for casc 3 as
compared to that of case 1. Hence, it can be concluded
that the effect of an unheated wall on St is substantial
in the neighbourhood of the location where heat flux
changes, although this effect decays rapidly down-
stream.

Additional details were examined in the neigh-
bourhood region of the unheated wall. Figure 4
presents the temperature difference between the wall
and free stream, T,—T,, vs the distance from the
leading edge, x. Figure S shows the relation between
Stand Re,. Similar trends of temperature distribution
were observed as those presented in ref. [2]. The effect
of the line source applied in case 3 can be clearly
seen from these figures. The line source at location ¢,
midpoint between « and b, was considered as an infi-
nite heat flux with infinitesimal width the energy input
of which was equivalent to a heat source with the same
length of unheated wall (i.e. Q, = go(b—«)). Under
this condition, the temperature difference of case 3
approached infinity at location ¢ however, it decayed
even faster than that of case 2. Finally. this yielded a
result that T,— T, of case 3 lays between those of
cases 1 and 2 for the downstream region from ». Thus
Sty lays between St and S¢, in the downstream region
of the unheated wall. This is to say, the line source
applied in case 3 can somewhat but not totally com-
pensate the effect of an unheated wall on Stanton
number, even though the energy input of the line
source is equivalent to the energy deficit of case 2. The
numerical solutions for cases | and 2 are shown in
Fig. 6. In general, the same trend as the analytical
counterparts is predicted.

5.2. Heat transfer solutions as functions of local
parameters

A simple relation for the uniform heat flux case has
been derived before, equation (39), which gives

CTD2 = St Pri? Rey* = 0.01236.

The numerical solution of case 1 showed that C7D2
varied between 0.01212 and 0.01225 for the same
region as before, the deviation of which was within
2% compared to the analytical solution.

Figure 7 shows the relation between enthalpy thick-
ness A, and x. For the uniform heat flux case, A,
increases monotonously with x. However, the
unheated wall and line source have strong effects on
A, in the vicinity where the heat flux variation occurs.
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It is observed that A, increases sharply where heat
flux drops to zero and decreases rapidly where some
certain amount of heat flux is applied (A, drops to
zero for a line source which corresponds to an infinite
temperature difference). However, A, then recovers
its monotonous increase with x at a distance further
downstream of the unheated segment.

In the neighbourhood of the unheated wall A, is
not a monotonous function of x and thus it is in-
appropriate to use A, as an independent parameter
for interpretation of heat transfer performance.
Hence, the relations of S vs Re,, for cases 2 and 3
were presented only for the downstream region of the
unheated wall where A, is a monotonous function of
x. Itis seen in Fig. 8 that variations of St for the three
cases were within 5%. Finally, numerical solutions

for non-uniform heat flux cases are shown in Fig.

9. In general, the same trend as the counterparts of
analytical solution is observed.

6. CONCLUSIONS

Heat transfer to the wall of a turbulent boundary
layer has been studied, both from an analytical con-
sideration and by a numerical method. The effect of
a short unheated length and a concentrated heat
source on a wall has been evaluated. Some concluding
remarks can be drawn as follows.

(1) A short unheated wall has a strong effect on
the heat transfer solution in the vicinity immediately
downstream of the end point of the unheated wall.
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However, this effect decays rapidly and becomes neg-
ligible further downstream.

(2) The line source applied in case 3 can somewhat
but not totally compensate for the effect on Stanton
number caused by an unheated wall, although the
energy input of the line source is the same as the
energy deficit due to the adiabatic strip in case 2.

(3) Comparison of the calculated results showed
that the analytical solution based on Reynolds’ anal-
ogy and some simplified approximations provides a
simple but reasonable analysing tool. This approxi-
mation is technically useful. Comparison of calculated
results with available experimental data for the uni-
form heat flux cases given in Appendix B showed
satisfactory agreement.
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APPENDIX A. PROCEDURE OF THE
ANALYTICAL SOLUTION
For certain special cases. the heat transfer coefficient from
a step-function solution can be put in the form

RE XY = [ =&y (A1)
Defining a4 modified form as
o ey e
RSN SRV A2
NSV = L ity (A2)
then the result is in the following form:
To(x)—T, = ( ga(S)g(C, x) d¢ (A3)
d()

where ¢4(<) is the arbitrary prescribed surface heat flux.

From equation (9), the function f(x) and the exponents
and 7 can be derived via the relation between the Stanton
number St and the heat transfer coeflicient 4

Ut o
B¢, x) = 0.0287kx ”"Pr‘”‘( ) [pore—geiop o

v

{Ad)

then

ST
F{x) = 0.0287kx™ "1 ppe (ﬁ:)

/

w=0/10, =1/9. (A3)

Substituting into equation (A2), one obtains

0.9P"“'6R’\« (6834 FRVAR LU S5
YR - TWIT : t— (f’- (A6)
T(HT() - 0.0287k X

in which the factorial is expressed as a gamma function
through the relation I'(x+1) = xI.

In general, numerical tables of the gamma function ['(x)
can be found for 1 < x < 2, while the value for the other
range can be calculated through the relation I'(x+1) =
x I(x). Inserting the numerical value of the gamma function
into equation {A6), one obtains

342 N3 167 -89
g(&x) = ,,('Pr'”"Re;""x[l—(%) ] . (A7)

Then equation (A3) becomes

X}

et

4t

342 e o | s
Ty()=T =" Pr " Re q(&)
]

FACIET N B )
x|:1A<§> ] dZ. (AS8)

The simplest example for a specified heat flux is a constant
value. With ¢i( &) a constant, equation (A8) becomes

Y.-P. Cuyou

3.42
Tyx)—T, = i Pr-"®Re. "% q,

A é 21077 %
XJ [l*( ) } dé. (A9
0 X .
Introducing a change of variable
f el
p=1l- (\) (ALO)

the integral can be transformed into the form of the beta
function which is defined as

H
lfl(m.n)zsj =y dz (Al
0
where
Timy Tim .
Bimn) = Mf(—m+;z} form>0n<ao. (Al2)
Hence
S =310 89 N |
= e P 10x ) g
_JO[I <\) ] dé = 9 J; (L —n) Y dy.
{A13)

Comparing equation {A13) with equation {A1l), one finds
m = 1/9 and n = 10/9. Thus

10x 10
g0 ( : ) - 9.827x.

9° 9 (Ald)

APPENDIX B. THE TURBULENT PRANDTL
NUMBER

As mentioned before, we must know the eddy viscosity
and the turbulent Prandtl number in order to solve heat
transfer problems. A number of experimental and theoretical
investigations have been devoted to obtaining the eddy vis-
cosity. However, since much less is known about the turb-
ulent transport phenomenon like turbulent heat transfer
compared to momentum transfer, fewer studies have been
made for the turbulent Prandtl number.

The simplest approach is to make a plausible assumption,
which reached the conclusion that Pr, = 1, the well-known
Reynolds’ analogy. This statement is based on a heuristic
argument that both momentum and heat are transferred as
a result of the motion of eddies in a fully turbulent field.
Experimental evidence suggested that Pr,. at least for air, is
of the order of unity over most of the boundary layer except
in the region very close to the wall.

In the following, two prediction models for Pr, are
adopted. The first model to be used with the numerical solu-
tion in order to take into account the variable Pr, effect was
adopted from ref. [1] and assumed the form of

i Cy, Pe,
Pri= {zﬁ(; N

=L (€, Pe)?
JPr)

1 -
[—exp{ BI
X[ op (Ch Pe.J(Pr,, ))]} ®Bh

where Pe, = (e /V)Pr: Pr,, = 0.86 {value of Pr, far from the
wall, an experimental constant):; {, = 0.2 {(an experimental
constant).

The second model was proposed by Wassel and Catton
[6], which contained four adjustable constants chosen to
correlate with the data of Simpson et al. {7}
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Constant Prt (0.9)
Variable Prt, model 1
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A Experimental data, Ref. 3
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Fic. Bl. Comparison of computational solutions with experimental data for uniform heat flux situation
(case 1).
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o 1
C (em/v)
= C, Pr —C,

{’ e [mM/vJ}

where C, =021, €, =525, C;=0.20 and C,=5. With
these constants the predicted values of Pr, fell within the
uncertainty envelope of the experimental results.

For variabie Pr,, the numerical solutions adopting both
models described above showed that the values of CTX
changed only slightly, which revealed the similar heat trans-
fer behaviour as the constant Pr, case. For the first model,
equation (B1), CTX varied within 0.02843 and 0.02860,
which was about a 4.5% deviation. For the second model,

Pr,

(B2)

equation (B2), CTX varied between 0.02805 and 0.02823,
which gave about a 5.8 % deviation.

Comparison of experimental data [3,8] and numerical
solutions for both constant and variable Pr, are presented in
Fig. B1. The approximate analytical solution can be regarded
as almost identical to the numerical solution for the constant
Pr, case. For experimental data, several different free stream
velocities were applied, but the conventional representation
of heat transfer results, i.e. St vs Re,, fell almost together
one by another. In general, good agreement between exper-
imental data and calculated results was achieved. It is found
that consideration of variable Pr, provides a better prediction
for the heat transfer to the wall for lower Reynolds numbers,
Re. < 1.5x 10%; while the constant Pr, solution seems to
match the experiments beiter for higher Reynolds numbers,
Re, > 2x10%

EFFET D’UNE COURTE LONGUEUR NON CHAUFFEE ET D’UNE SOURCE
CONCENTREE SUR LE TRANSFERT THERMIQUE A TRAVERS UNE COUCHE LIMITE
TURBULENTE

Résume—On €tablit une solution analytique approchée du transfert thermique 4 travers une couche limite

turbulente bidimensionnelle avec flux thermique variable le long d’une plaque plane. L'effet d’une petite

longueur non chauffée sur la paroi est étudié. En outre on évalue I'effet de la combinaison d’une zone

courte non chauffée et d’une source linéaire au milieu de la bande adiabatique. Des solutions numériques

sont données qui utilisent une technique aux différences finies pour les équations paraboliques de couche

limite. Des résultats sont présentés qui donnent le transfert thermique 4 la fois en fonction de la distance
au bord d’attaque et des paramétres locaux.

EINFLUSS EINER KURZEN UNBEHEIZTEN STRECKE UND EINER
KONZENTRIERTEN WARMEQUELLE AUF DEN WARMETRANSPORT DURCH EINE
TURBULENTE GRENZSCHICHT

Zusammenfassung—Es wird eine analytische Niherungslosung fiir den Warmetransport durch eine zwei-

dimensionale turbulente Grenzschicht entlang einer ebenen, unterschiedlich beheizten Platte hergeleitet.

Der Einfluf einer kurzen unbeheizten Strecke an der Wand wird untersucht. Zusétzlich wird der kom-

binierte EinfluB einer kurzen unbeheizten Strecke und einer linienférmigen Wérmequelle in der Mitte des

adiabaten Streifens untersucht. Die parabolischen Grenzschichtgleichungen werden mit Hilfe eines Finite-

Differenzen-Verfahrens numerisch gelost. Die Ergebnisse fiir den Wirmeiibergang werden als Funktion
der Lauflinge und als Funktion Ortlicher Parameter dargestellt.
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BJIAUSAHHUE KOPOTKOI'O HEHATPETOI'O YYACTKA U COCPEJOTOYEHHOI'O
UCTOYHUKA TEIUIA HA TEIUIONEPEHOC YEPE3 TYPBYJIEHTHBI MMOTPAHUUYHBIH
CJION

Anmvoramus—IIpuBoaUTCA NPUGHKEHHOE AHATMTHYECKOE PELIEHHE 3alla4H TEILIONEPEHOCA Yepe3 IBY-
MEpHBIH TypOyNeHTHBIR NOrpaHH4HbIN CJIOH C MEPEMEHHBIM TEILIOBLIM NIOTOKOM BAOJIb IIOCKOM riac-
TeHbl. Mccnenyercs BiMAHME HEHAarpeToro y4acTka MajoH [MUIMHBI Ha cTeHke. OLEHMBAETCA TaKxe
3 dexT KOMOHHALMN KOPOTKOr0 HEHarpeToro y4acTKa H JIHHEMHOTO NPOAO/ILHOIO MCTOYHHKA TEMsa B
cepenuHe anHabaTH4eckol MIacTMHKH. OnHCHIBAIOTCS YHCJICHHBIC PELICHHS, MOTYYeHHbIE ¢ HCMObL30BA-
HHEM KOHEYHO-Pa3HOCTHOTO METOAA NPOrOHKH [UIA YPaBHEHHi 11apaboiMyeckoro THNa B MOrPAHUYHBIX
cnosx. [pencrasyiens! pe3ynbTaThi pelieHns 3aay TEMIONEPEHOCA B 3aBUCHMOCTH Kak OT PacCTOsHMS
OT nepeaHel KPOMKH, Tak M OT JIOKaJIbHbIX NapaMETpPOB.



