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Abstract-An approximate analytical solution of heat transfer through a two-dimensional turbulent 
boundary layer with variable heat flux along a flat plate is derived. The effect of a short unheated length 
on a wall is investigated. In addition, the effect of the combination of a short unheated length and a heated 
line source midway along the adiabatic strip is evaluated. Numerical solutions are also carried out, utilizing 
a finite difference marching procedure for parabolic type equations in boundary layers. Results are presented 
for heat transfer solutions both as a function of distance from the leading edge and as a function of local 

parameters. 

1. INTRODUCTION 

CONVECTIVE heat transfer through a turbulent bound- 
ary layer is a specific case of the general phenomena 
of turbulence and turbulent fluid flows. As it is well 

known, no purely theoretical solution of fluid dynam- 
ics for the turbulent boundary layer exists at the 
present. Consequently there are no exact theoretical 
solutions available for heat transfer in the turbulent 
boundary layer, but their occurrence in nature and 
technology is so frequent that it has been necessary to 
learn as much as possible about them. 

Extensive literature resources concerning constant- 
property flow with negligible viscous dissipation have 
been cited in the book by Kays and Crawford [l]. A 
few technically useful relations can be obtained with 
some simplified approximations. The energy equation 
with constant fluid properties is linear in temperature. 
Hence, evaluation of heat transfer from a flat plate 
can be decoupled from the momentum equations. 
Numerous research works have been devoted in the 
past years to the problems such as heat transfer from 
a plate with constant wall temperature or constant 
heat flux. These works provide basic building blocks 
for constructing solutions for more complicated prob- 
lems. Computation of heat transfer from a flat plate 
with an arbitrary wall temperature distribution or wall 
heat flux distribution can be performed by employing 
superposition techniques. 

In practical engineering problems, non-uniform 
temperature or wall heat flux distributions across sur- 
faces are encountered much more frequently than the 
somewhat standard academic-type problems with 
constant temperature or wall heat flux along a surface. 
Hence, some simplified approximate solutions for the 
aforementioned heat transfer problems are highly 
desirable from a technical point of view. 

The major task of this work was to carry out a 

theoretical analysis of heat transfer through a tur- 
bulent boundary layer with variable heat flux along a 
flat plate. The effect of a short unheated length and a 
concentrated heat source, which is frequently experi- 
enced in many industrial applications, such as the 
cooling problems of electronic elements, boiling heat 
transfer, etc., was evaluated. The appropriateness of 
applying Reynolds’ analogy and constant turbulent 
Prandtl number in the well-established approximate 
method was checked with the aid of numerical solu- 
tions compared with some available experimental 
data. 

The approximate analytical solution of the heat 
transfer through a turbulent boundary layer with vari- 
able heat flux along a flat plate was used as a guidance 
for a laboratory experiment to evaluate the effect of 
a short unheated length and a concentrated heat 
source on a wall. Results are presented for turbulent 
boundary layers of air on a flat plate. The relations of 
Stanton number St vs Reynolds numbers, Re, and 
Real, for three cases are evaluated (Fig. 1). 

FIG. I. Sketch of the problem. 
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NOMENCLATURE 

constant for turbulence model, equation 

(47) 
location where the adiabatic wall starts 
location where the adiabatic wall ends 
constant 

location of the concentrated heat source, 
midway between CI and b 
specific heat 
function for heat transfer coefficient, 
equation (Al) 
function for heat transfer coefficient, 
equation (A2) 
heat transfer coefficient 

integrals defined in equations (13), (20) 
and (21) 
thermal conductivity 
mixing length 
Peclet number 
Prandtl number 

heat flow from the concentrated heat 
source 
wall heat flux 
Reynolds number 
Stanton number 
temperature 
streamwise velocity 
cross stream velocity 
streamwise coordinate 

cross stream coordinate 
characteristic length 
dimensionless distance. 

Greek symbols 
thermal diffusivity 
beta function 
incomplete beta function 
gamma function 
enthalpy thickness 
boundary layer thickness 
infinitesimal distance 
eddy diffusivity for heat transfer 
eddy diffusivity for momentum transfer 
dimensionless variable 
von Karman constant 
constant for turbulence model, equation 

(46) 
dynamic viscosity 
kinematic viscosity 
local variable 
density 
shear stress on the wall. 

Subscripts and superscripts 

;: 
at location a 
at location b 

c at location c 
t turbulent 

0” 
free stream 
wall 

I, flux per unit area. 

(1) A classical flat-plate, heated, two-dimensional 
boundary layer. The heat flux is uniform and heating 

begins at the leading edge. 
(2) Same as (I) except there is an adiabatic strip 

0.0254 m long, 1.397 m downstream of the leading 

edge. 
(3) Same as (2) except there is a heated line source 

midway along the adiabatic strip. The energy to the 
line source is equivalent to the same length of heated 
surface occupied by the adiabatic strip. 

2. GOVERNING EQUATIONS AND BOUNDARY 

CONDITIONS 

For a steady, two-dimensional, constant-property 
turbulent boundary layer over a flat plate with negli- 
gible body force and negligible viscous dissipation, 
the governing equations can be expressed as follows. 

Continuity equation 

dil 

3X 

Momentum equation 

+%o 
(% 

(1) 

Energy equation 

.~+v!$= &.s,)~] (3) 

where sM and .sn are the eddy diffusivities for momen- 
tum and heat transfer, respectively. These quantities 
must be determined by a turbulence model, which will 
be discussed later. It also should be noted that all of 
the quantities U, V and T are time-averaged mean 

values. 
The inlet conditions at the leading edge and the 

boundary conditions for velocity fields are the same 
for all three cases, which can be expressed as follows : 

x=0: u= iJi,, V=O, T=T, 

y=o: u = 0, v=o 

y+co: u=u,, v=o. (4) 

For the energy equation, boundary conditions at 
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the outer layer are taken as the same, while the con- 
ditions on the wall are different 

8(t,i)=~p,-O’Rr;08[l_(~~‘o~~~9, 

y-+co: T=T,. (5) (11) 

(1) Case 1 
Then equation (10) becomes 

I’ = 0: q:, = -k*aT/ay = qo. (6) T,(x)-T, = ++“.sRe,o,’ 
s 

rq;(t) 

(2) Case 2 

x[t-(:j ] 

9110 --1(/Y 

y=o: q’;=qo forx <a and x> b dt. (12) 

qS= 0 fora<x,<b. (7) 
3.1.1. Case 1. The simplest example for a specified 

(3) Case 3 heat flux is a constant value. With q:(t) a constant, 

.v=o: q;=qo for.u<a and x>b 
equation (12) can be expressed in terms of a beta 
function. 

q$=O fora<x<c and c<x<b Define an integral 

where 

q$ = q< for x = c 

~ I 

s < f,. 

qc dx = q,(b-a). (8) then the heat transfer solution can be presented via 
(‘-6 temperature as 

3. APPROXIMATE ANALYTICAL SOLUTION 
T,(x)-T, = yPr_O” Re;moRqox (14) 

As mentioned before, analytical solutions can be 
developed by accepting some degree of approximation 
in return for a simplified usable result. The energy 
integral equation was used, following the same general 
procedure of a laminar boundary layer. 

3.1. Heat transfer solution as a function of distance 

jiom the leading edge 

The solution of the turbulent boundary layer with 
constant free stream velocity along a semi-infinite 
plate with unheated starting length is treated first. The 
details can be found in ref. [l]. A basic assumption 
is that the velocity and temperature profiles can be 
expressed by a l/7 power law. Reynolds’ analogy is 
also applied, i.e. Pr = 1 and Pr, = 1, so is the fact that 

the boundary layer thickness varies with a 4/5 power 
of length. Further assuming the starting-length cor- 
rection for a step-wall temperature independent of 
Prandtl number leads to a simple relation as follows : 

St, * Pro 4 = 0.0287Re;0 ’ [l-(;~‘o]-‘i’. (9) 

Following the same procedure for the laminar 
boundary layer, the heat transfer solution can be 
modified to yield the wall temperature as a function 
of heat input [2,3]. The result is given in the following 
form : 

5 

Y 
T,(x)-T, = q:(Og(5> x) d5 (IO) 

0 

where q;(t) is the arbitrary prescribed surface heat 
flux and 

or in terms of Stanton number 

St = 0.02976Pr-0,4 Rem” 1: (15) 

3.1.2. Case 2. A step-function of heat flux was pre- 
scribed to the wall. Superposition of heat flux was 
applied in equation (12). 

For x < a, the same result as case 1 was obtained. 
For a < x < b 

To(x)- T, = qo 
s 

d’g(L x) d5. (16) 

Forx>b 

T&)--T, = qo[ [g(E.x)dt+ [g(Wd5 

- ~g(i.x) dC]. (17) 

The integrals in equations (16) and (17) can be 
transformed into a so-called incomplete beta function 
defined as 

/l,(m,n) = ~Y(l-z)‘-’ dz = /l,(rn,n) 
i 

-PI-,hn). (18) 

The incomplete beta function is shown in Fig. 2. 
Define two more variables 
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FIG. 2. Normalized incomplete beta function with respect to 
8,(1/9, IO/S) = 8.8439. 

then the integral in equation (16) becomes 

Similarly 

ln summary, the solutions for case 2 can be listed 

as follows : 

(1) x < a, same as case 1. 

(2) a < .Y < b 

T,(x)-T, = 3+“.i Re,08Y”I,,. (22) 

(3) x > b 

T&)-T, = 3$‘, ~n.hReJn.8qo(Z,,+l-I,) 

(23) 

xPrmo4Re.;02 
St = -_____~ 

3.42(1,+1-I,,) 
(24) 

3.1.3. Case 3. A line source is placed at x = c, the 
midpoint of a and b, which can be treated as a delta 
function with a certain heat input 

< +I 

s 
q<, d< = q,(b-a) z Q<. (25) 

, -8. 

The line source is a limiting case of equation (lo), 
for which the interval approaches zero and the source 
intensity increases to keep the heat input a finite value. 

Therefore 

TnC+ T, = LdL.4Q(L) 

for t,, > x, y(<,,, x) = 0. (26) 

For c < x < h 

s 

0 

To(x)- TX = Yo s(5, x) d5 fg(c, x)Q, (27) 
0 

For x > b 

\- 
f40 s s(t,x) d5--qn 

0 s h 

.4(L .x) d5. (28) 
0 

Hence. the solutions for case 3 are : 

(1) x < c, same as case 2. 
(2) c c x < b 

x[,-(;~‘~]“‘“). (29) 

(3) x > b 

x{I<,+l-l,+(b-n)[l- (:~‘“I”“) (30) 

or 

St = - 
xPrm0.4 Re.;‘.* 

3,42{I,,+I-l,t(ho)[l- (;)‘;‘“l”‘l’ 

(31) 

3.2. Heat transjkr solution as a ,function of locul 
parameters 

In some situations, the relation between heat trans- 
fer coefficient and local parameters, say ReA,, is more 
desirable. The energy integral equation as shown 
below was used to derive this kind of relation [I] 

I, 

Yo 
1 d{A&X b[Tn(x)-Txl}. (32) 

c,=Rdx 

For a constant-property flow over a flat plate with 
constant free stream velocity, the equation can be 

simplified to 

(33) 
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3.2.1. Case 1. For constant heat flux, a simple 
relation between A2 and St can be obtained 

A, = St*x. (34) 

The Stanton number generally can be expressed in the 
form 

St = C* Re;” (35) 

then the relation between A: and Y for case 1 can be 
derived as follows : 

or 

(37) 

Substituting into equation (35), one obtains 

St = c I:( 1 -n) . Re;/,,+ 1). 
(38) 

The constants in equation (35) can be determined 
by comparing equation (35) with equation (15), i.e. 
C = 0.02976Prm”,4 and n = 0.2. Then the relation 
between St and Reb2 can be obtained from equation 

(37) 

St = O.O1236Pr- ‘I* Re,,““. (39) 

It should be noted that there are no such simple 
relations as equation (39) for cases 2 and 3. However, 
the relation between A2 and x can be evaluated 
through equation (33) since the temperature difference 
T,(x)- T, has been calculated in Section 3.1. Thus 
the relation between St and Re,> can then be obtained. 

In the following, the relation between A, and x are 

stated for cases 2 and 3. 

3.2.2. Case 2. 

(1) x < a, same as case 1. 

(2) a < x < b 

AZ = 
qoa 

P,~,C,[T&)-T~I 
(40) 

(3) .X > b 

A2 = 
q&+x--b) 

~u~x~Cp[To(x)-T,l’ 
(41) 

3.2.3. Case 3. 

(1) x < c, same as case 2. 

(2) c < x < b 

A2 = 
q,b 

P,~,C,[TO(~-T~J’ 
(42) 

(3) x > b 

qox 
‘* = P,~,C,[TOW-T,I’ 

(43) 

4. NUMERICAL SOLUTION 

In order to solve the governing equations with the 
prescribed boundary conditions, a turbulence model 
has to be introduced to evaluate the eddy quantities 
.aW and a,,, or in turn, the eddy viscosity pLt and the 
turbulent Prandtl number Pr,. 

The theory of turbulent wall shear layers is pres- 
ently in a state of intense study, and new break- 
throughs are continually in sight. But the simplest of 
all the schemes proposed remains the very old Prandtl 
mixing-length model, and with new information avail- 
able on the very important behaviour of the viscous 

sublayer, the mixing-length model provides a remark- 
ably adequate basis for many engineering appli- 
cations, especially for some simple flow patterns. The 
following calculations were based on this turbulence 

model : 

k4 = d*wm4. (44 

To evaluate the mixing length 1, the outer region of 
the boundary layer and the near wall region must be 
considered separately. For flows remote from walls, 
I is usually taken as uniform across the layer and 
proportional to the thickness of the layer. For a 
boundary layer on a wall, the variation of 1 in the 

outer part is similar to that in free turbulent flows, 
but 1 is proportional to the distance from the wall for 
the near wall region. Escudier’s formula is usually 
recommended by investigators working 

14351 

1 = Kl' for 0 < J’ < ,%y,/K 

I = Iy, for y > Iy,/x 

where y is the distance from the wall, 

on this field 

(45) 

(46) 

I and K are 
constants; K is usually called the von Karman con- 
stant and y, is a characteristic thickness of the layer, 
usually taken as 6,, (the boundary layer thickness at 
the point where U/U, = 0.99). 

However, for a region very close to the wall, called 
the viscous sublayer, equation (45) needs to be modi- 
fied. Then, van Driest’s hypothesis is applied at the 

near wall region, which is 

I = ~y[l -exp (-y+/A+)] (47) 

where A+ is a constant and y+ a dimensionless dis- 
tance defined as 

Y+ = Y(P7s)“*/F 

in which 7$ is the shear stress on the wall. 
The turbulent Prandtl number must be specified for 

applying various turbulent transport theories to heat 
transfer. Most workers have solved the energy equa- 
tion by assuming a constant Pr,. A marching pro- 
cedure for solving parabolic equations of boundary 
layers described in ref. [4] was utilized for the present 
work. The empirical constants of the Prandtl mixing- 
length hypothesis were adopted from ref. [l]: i.e. 
1 = 0.085, K = 0.41 and A+ = 25. A value of 0.9 for 
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the turbulent Prandtl number was applied for the 
constant Pr, results. 

5. RESULTS AND DISCUSSIONS 

Results were presented for turbulent boundary lay- 
ers of air on a flat plate. Heat transfer solutions were 
obtained with free stream temperature, T, = 20X, 

and free stream velocity, U, = I5 m s- ‘. Boundary 
conditions on the wall were prescribed heat flux, with 
q0 = 240 W m-‘, u = 1.397 m, b = 1.4224 m and 

Qc = qn(b - u). Fluid properties, which were obtained 
from ref. [I], were regarded as constants based on the 
free stream temperature: p = 1.2047 kg m- ‘, 
IL= 1.817x10~“kgm~‘s~‘,C,~= 1004Jkg’K’, 
k = 2.563 x 10. ’ W m-’ K -’ and PI = 0.712. The 
relation between Rc, and .Y can be evaluated as 
Re, = 9.945 x 10”s or .r = 1.0055 x 10-hR~~,. Loca- 
tion x = CI corresponds to Re, = 1.389 x 10” and .Y = h 
corresponds to Re,, = 1.415 x IO’. 

5. I. Heat tramfbr solutions as,functions 0f.x (or Re,) 

For uniform heat flux, it was obtained from equa- 
tion (I 5) that 

CTX = St Pro 4 Ref ’ = 0.02976. 

The numerical solution for case 1 with constant Pr, 
showed that the above constant varied within 0.03007 
and 0.02967 for the range of 5 x IO5 < Rr,. < 5 x IO”, 
which gave the deviation between analytical and 
numerical solutions within I %I, 

A comparison of temperature difference dis- 
tribution for a uniform heat source and for a dis- 
continuous heat source dissipating the same power 
has been presented in ref. [2]. The temperature differ- 
ence distrjbution for a plate with pulse heat input was 
also presented in ref. [3]. It was found that there is a 
steep change (decrease) of temperature distribution 
in the downstream vicinity of the starting point of 
unheated walls, and similarly, there is a steep increase 
of temperature distribution in the immediate down- 
stream region of the end point of unheated walls. The 
situation in the present work is somewhat similar but 
not equivalent to the above cases. However, the trend 
of the variation of temperature distribution for an 
unheated wall can be applied to the present situation. 
Since the temperature difference, 7’,,- T,, in the 
unheated region is lower than that of uniform heat 
flux, this situation is still sustained in the immediate 
downstream region of the end point of the unheated 
wall. Thus, it is expected that St in this region for the 
case with an unheated wall is higher than that for 
uniform heat flux. However, the effect of an unheated 
wall on St decays rapidly downstream since there is a 
sharp increase of temperature distribution, and this 
effect is only restricted in the vicinity of the location 
where heat flux changes. 

Figure 3 shows the relation of Stanton number vs 
Re,. It can be seen that a short unheated length on 
a wall (a d x G h) has a strong effect on St in the 

immediate vicinity downstream of the unheated 
length. For example, at x = h+~ (E is an intinitcsimal 
distance), St, = 2.007 x 10 I. SI? = 5.6 x IO ’ and 
St, = 4.09 x IO- ‘, where St,, St2 and St, arc thr 
Stanton numbers of cases 1, 2 and 3. respectively. AS 
expected, variations of St for cases 2 and 3 decay 
rapidly downstream. For example, at the iocation 
Re, = 1.5 x 10” (i.e. .Y = 1.5083 m, 0.0859 m down- 

stream from h), StJSt, = 1.021 and St,/St, = I.01 I. 
The variation of St at this location is reduced to 

around 2% for case 2 and around 1% for cast 3 as 
compared to that of case I. Hence, it can be concluded 
that the effect of an unheated wall on St is substantial 
in the neighbourhood of the location where heat flux 
changes, although this effect decays rapidly down- 
stream. 

Additional details were examined in the ncigh- 
bourhood region of the unheated wall. Figure 4 
presents the temperature difference between the wall 
and free stream. r,,- T, . vs the distance from the 
leading edge, x. Figure 5 shows the relation between 
St and Re,. Similar trends of temperature distribution 
were observed as those presented in ref. [2]. The effect 
of the line source applied in case 3 can be clearly 
seen from these figures. The line source at location c; 

midpoint between a and h, was considered as an infi- 
nite heat flux with infinitesimal width the energy input 
of which was equivalent to a heat source with the same 

length of unheated wall (i.e. Q( = y,(h-a)). Under 
this condition, the temperature difference of cast 3 
approached infinity at location t* : however. it decayed 
even faster than that of case 2. Finally. this yielded a 
result that T,,- T, of case 3 lays between those of 
cases 1 and 2 for the downstream region from h. Thus 
St, lays between St, and St? in the downstream region 
of the unheated wall. This is to say, the line source 
applied in case 3 can somewhat but not totally com- 
pensate the effect of an unheated wall on Stanton 
number, even though the energy input of the line 
source is equivalent to the energy deficit of case 2. The 
numerical solutions for cases I and 2 are shown in 
Fig. 6. In general, the same trend as the analytical 
counterparts is predicted. 

5.2. Heat transfh solutions us functions of’ local 

parameters 
A simple relation for the uniform heat flux case has 

been derived before, equation (39). which gives 

CTD2 = St Pr”‘Reit = 0.01236. 

The numerical solution of case 1 showed that CTD2 
varied between 0.01212 and 0.01225 for the same 
region as before, the deviation of which was within 
2% compared to the analytical solution. 

Figure 7 shows the relation between enthalpy thick- 
ness AZ and .Y. For the uniform heat flux case, AZ 
increases monotonously with x. However, the 
unheated wall and line source have strong effects on 
AZ in the vicinity where the heat flux variation occurs. 
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FIG. 5. Analytical solutions for the relation of Sr vs Re, at the neighbourhood of the unheated wall. 
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FIG. 6. Numerical solutions for the relation of SI vs Rc, at the neighbourhood of the unheated wall. 
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FIG. 7. Analytical solutions for the relation of A2 vs X- at the neighbourhood of the unheated wall. 

It is observed that AZ increases sharply where heat 
flux drops to zero and decreases rapidly where some 
certain amount of heat flux is applied (A, drops to 

zero for a line source which corresponds to an infinite 
temperature difference). However, AZ then recovers 
its monotonous increase with x at a distance further 
downstream of the unheated segment. 

In the neighbourhood of the unheated wall AZ is 
not a monotonous function of x and thus it is in- 
appropriate to use A, as an independent parameter 
for interpretation of heat transfer performance. 
Hence, the relations of St vs Re,, for cases 2 and 3 
were presented only for the downstream region of the 
unheated wall where AZ is a monotonous function of 
x. It is seen in Fig. 8 that variations of St for the three 
cases were within 5 % Finally, numerical solutions 

for non-uniform heat flux cases are shown in Fig. 

9. In general, the same trend as the counterparts of 
analytical solution is observed. 

6. CONCLUSIONS 

Heat transfer to the wall of a turbulent boundary 

layer has been studied, both from an analytical con- 
sideration and by a numerical method. The effect of 
a short unheated length and a concentrated heat 
source on a wall has been evaluated. Some concluding 
remarks can be drawn as follows. 

(I) A short unheated wall has a strong effect on 
the heat transfer solution in the vicinity immediately 
downstream of the end point of the unheated wall. 
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FIG. 8. Analytical solutions for the relation of SI vs Re,, downstream of the unheated wall. 
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FIG. 9. Numerical solutions for the relation of St vs Re,, downstream of the unheated wall. 

However, this effect decays rapidly and becomes neg- 

ligible further downstream. 
(2) The line source applied in case 3 can somewhat 

but not totally compensate for the effect on Stanton 
number caused by an unheated wall, although the 
energy input of the line source is the same as the 
energy deficit due to the adiabatic strip in case 2. 

(3) Comparison of the calculated results showed 
that the analytical solution based on Reynolds’ anal- 
ogy and some simplified approximations provides a 
simple but reasonable analysing tool. This approxi- 
mation is technically useful. Comparison of calculated 
results with available experimental data for the uni- 
form heat flux cases given in Appendix B showed 
satisfactory agreement. 
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APPENDIX A. PROCEDURE OF THE 
ANALYTICAL SOLUTION 

For certain special cases. the heat transfer coefficient from 
a stop-function solution can bc put in the form 

/,( ;. .v) = /$.Y\-)(.Y - < ) ‘. 

Defining a modified form as 

(AZ) 

then the result is in the following form : 

where c/y)(<) is the arbitrary prescribed surface heat flux. 
From equation (9) the function f’(.u) and the exponents 2 

and ;’ can be derived via the relation between the Stanton 
number St and the heat transfer coefhcient 11 

then 

/‘(.v) = 0.0287h.Y- I’ ’ Pr” b 

‘[j, o.ir 

i---j i I 

;’ = s/10, a = l/9. 

Substituting into equation (A2), one obtains 

(A5) 

in which the factorial is expressed as a gamma function 
through the relation T(s+ I) = s!. 

In general, numerical tables of the gamma function T(r) 
can be found for I < .I: < 2. while the value for the other 
range can be calculated through the relation r(.rt I) = 
.v. T(.u). Inserting the numerical value of the gamma function 
into equation (Ah), one obtains 

3.42 
T,,(s) - T, = -k Pr ” ’ Rc, ‘I h c,,, 

Introducing a change of variable 

the integral can be transformed into the form of the beta 
function which is defined as 

(All) 

where 

I-(m)* I-(n) 
pi (m,n) ‘= ---~- 

I-(m+nf 
fornr > 0, PI < K. (A12) 

Hence 

Comparing equation (Al3) with equation (Al I), one finds 
111 = I!9 and n = lO!9. Thus 

= 9.827s. 1Al4) 

APPENDIX B. THE TURBULENT PRANDTL 
NUMBER 

As mentioned before, we must know the eddy viscosity 
and the turbulent Prandtl number in order to solve heat 
transfer problems. A number ofexperimental and theoretical 
investigations have been devoted to obtaining the eddy vis- 
cosity. However, since much less is known about the turh- 
ulent transport phenomenon like turbulent heat transfer 
compared to momentum transfer. fewer studies have been 
made for the turbulent Prandtl number. 

The simplest approach is to make a plausible assumption, 
which reached the conclusion that Pr, = 1. the well-known 
Reynolds’ analogy. This statement is based on a heuristic 
argument that both momentum and heat are transferred as 
a result of the motion of eddies in a fully turbulent held. 
Experimental evidence suggested that fr,. at least for air, is 
of the order of unity over most of the boundary layer except 
in the region very close to the wall. 

In the following, two prediction models for Pr, are 
adopted. The first model to be used with the numerical solu- 
tion in order to take into account the variable Pr, effect was 
adopted from ref. [I] and assumed the form of 

Then equation (A3) becomes 

The simplest example for a specified heat flux is a constant 
value. With q;(c) a constant, equation (A8) becomes 

-I -1 

C, Pc,,:‘(Pr,,) 
(RI) 

where Pe, = (c%,/~.)Pr: Pr, = 0.86 (value of Pi-, far from the 
wall, an experimental constant) ; f’, = 0.2 (an experimental 
constant). 

The second model was proposed by Wassel and Catton 
[h], which contained four adjustable constants chosen to 
correlate with the data of Simpson er al. [7] 



The effect of a short unheated length through a turbulent boundary layer 

10 

Variable Prt.‘miel 1 

Variable Pn, model 2 

Experimental data, Ref. 3 

Ex~~~ntai data, Ref. 8 
” ” 

. 

1927 

.l 1 10 

LE-6 Rex 

Frc;. BI. Comparison of computational solutions with experimental data for uniform heat flux situation 
(case I). 

where C, = 0.21, Cz = 5.25, C7 = 0.20 and C, = 5. With 
these constants the predicted values of Pr, fell within the 
uncertainty envelope of the experimental results. 

For variable Pr,, the numerical solutions adopting both 
models described above showed that the values of CTX 
changed only slightly, which revealed the similar heat trans- 
fer behaviour as the constant Pr, case. For the first model, 
equation (Bl), CTX varied within 0.02843 and 0.02860, 
which was about a 4.5% deviation. For the second model. 

equation (82) CTX varied between 0.02805 and 0.02823, 
which gave about a 5.8% deviation. 

Comparison of experimental data [3.8f and numerical 
solutions for both constant and variable Pr, are presented in 
Fig. Bl. The approximate analytical solution can be regarded 
as almost identical to the numerical solution for the constant 
Pr, case. For experimental data, several different free stream 
velocities were applied, but the conventional representation 
of heat transfer results, i.e. St vs Re,, fell almost together 
one by another. In general. good agreement between exper- 
imental data and calculated results was achieved. It is found 
that consideration of variable Pr, provides a better prediction 
for the heat transfer to the wall for lower Reynolds numbers, 
Re, < 1.5 x 106: while the constant Pr, solution seems to 
match the experiments better for higher Reynolds numbers, 
Re, > 2 x IO”. 

EFFET DUNE COURTE LONGUEUR NON CHAUFFEE ET DUNE SOURCE 
CONCENTREE SUR LE TRANSFERT THERMIQUE A TRAVERS UNE COUCHE LIMITE 

TURBULENTE 

Reau&-Gn Ctablit une solution analytique approch&e du transfert thermique a &avers une couche limite 
turbulente bidimensionnelle avec flux thermique variable le long d’une plaque plane. L’effet d’une petite 
longueur non chauff&e sur la paroi est Btudid. En outre on &value l’effet de la combinaison d’une zone 
courte non chauffee et d’une source lineaire au milieu de la bande adiabatique. Des solutions numbriques 
sont dorm&es qui utilisent une technique aux differences finies pour les equations paraboliques de couche 
limite. Des r&hats sont present&s qui donnent le transfer-t thermique ii la fois en fonction de la distance 

au bord d’attaque et des parametres locaux. 

EINFLUSS EINER KURZEN UNBEHEIZTEN STRECKE UND EINER 
KONZENTRIERTEN WARMEQUELLE AUF DEN WARMETRANSPORT DURCH EINE 

TURBULENTE GRENZSCHICHT 

2~~nf~un~Es wird eine anaiytische N~herungsl~sung fir den W~~etranspo~ durch eine zwei- 
dimensionak turbulente Grenzschicht entlang einer ebenen, unterschiedlich beheizten Platte hergeleitet. 
Der EinfluB einer kurzen unbeheizten Strecke an der Wand wird untersucht. Zusltzlich wird der kom- 
binierte EinfluD einer kurzen unbeheizten Strecke und einer linienformigen Wlrmequelle in der Mitte des 
adiabaten Streifens untersucht. Die parabolischen Grenzschichtgleichungen werden mit Hilfe eines Finite- 
Differenzen-Verfahrens numerisch gel&t. Die Ergebnisse fiir den Warmefibergang werden als Funktion 

der Lauflange und als Funktion Grtlicher Parameter dargestellt. 
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BJ-IMIIHME KOPOTKOrO HEHAt-PETOI-0 Y9ACTKA M COCPEAOTOgEHHOrO 

WCTOYHMKA TEI-IJIA HA TEl-UIOnEPEHOC YEPE3 TYPEiYJIEHTHbIR I-IOlIPAHW~HbI~ 
cnon 

AIIHOTPUIIS-~QEXLIO~I~TCSI npa6nmxewoe am.rwrwuzcKoe pelue~~e 3anaw TennonepeHoca vepes nBy- 

MepHb1i-i Typ6yneHTHbIfi nOrpaHH’IHbIii CnOii c “epeMeHHbIM TeIInOBbIM IIOTOKOM BAOnb IInOCKOfi IUIaC- 

mHbI. MccnenyeTcn Bmmtie HeHarpeToro yvacma Manoii anmm Ha meme. Ouewisaercn Tame 

Z+#~KT KOM6HHaUUU K~~~TKoI-0 HeHarpeToro yracma H nnHeiiIior0 npononbHor0 HcTownfKa Tenna B 

cepenwfe ~Ha6aTWIeCKO% nnacrwui. OnHcbIsawTcn wicnewible pemeaaa, nonyqewude c wXIonb30na- 

HHeM KOH‘YWO-Pa3HOCTHOrO MeTofla IIPOI'OHKH nJIll ypaBHeH5iti napa6onwiecKoro Tuna B norpaHwvHbIx 

cnoffx. npencTaBneHbI pe3ynbTaw pelueHsn 3anas TennonepeHoca B 3amicWbfocrN KaK OT paccromwn 

OT nepenHeii ~p0h4KH, TaK I( OT noKanbHbIx napahteTpoe. 


